An unsupervised learning approach for facial expression recognition using semi-definite programming and generalized principal component analysis

نویسندگان

  • Behnood Gholami
  • Wassim M. Haddad
  • Allen Tannenbaum
چکیده

In this paper, we consider facial expression recognition using an unsupervised learning framework. Specifically, given a data set composed of a number of facial images of the same subject with different facial expressions, the algorithm segments the data set into groups corresponding to different facial expressions. Each facial image can be regarded as a point in a high-dimensional space, and the collection of images of the same subject resides on a manifold within this space. We show that different facial expressions reside on distinct subspaces if the manifold is unfolded. In particular, semi-definite embedding is used to reduce the dimensionality and unfold the manifold of facial images. Next, generalized principal component analysis is used to fit a series of subspaces to the data points and associate each data point to a subspace. Data points that belong to the same subspace are shown to belong to the same facial expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Segmentation of Facial Expressions Using Semi-Definite Programming and Generalized Principal Component Analysis

In this paper, we use semi-definite programming and generalized principal component analysis (GPCA) to distinguish between two or more different facial expressions. In the first step, semi-definite programming is used to reduce the dimension of the image data and “unfold” the manifold which the data points (corresponding to facial expressions) reside on. Next, GPCA is used to fit a series of su...

متن کامل

Using Global PCA Generated Receptive Fields for Face Recognition

We apply the global Principal Component Analysis (PCA) learning for face recognition tasks. The global unsupervised PCA learning generates a set of plausible visual receptive elds that are ideal for image decomposition during the feature extraction process for recognition. The procedure and results of our approach are illustrated and discussed.

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010